Generalized barycenters and variance maximization on metric spaces

نویسندگان

چکیده

We show that the variance of a probability measure \(\mu \) on compact subset X complete metric space M is bounded by square circumradius R canonical embedding into P(M) measures M, equipped with Wasserstein metric. When barycenters are unique (such as CAT(0) spaces), our approach shows in fact coincides and so this result extends recent Lim-McCann from Euclidean space. Our involves bi-linear minimax theory \(P(X) \times P(M)\) easily to case when replaced very general moments. As an application, we provide simple proof Jung’s theorem CAT(k) spaces, originally due Dekster Lang-Schroeder.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalized Probabilistic Metric Spaces

In the present paper we study some generalized probabilistic metric spaces. Relationships with another deterministic and probabilistic metric structures are analyzed. A contraction condition for mappings with values into such a generalized probabilistic metric space is given. Fixed point results are proved.

متن کامل

Generalized multivalued $F$-contractions on complete metric spaces

In the present paper‎, ‎we introduce the concept of generalized multivalued $F$ -‎contraction mappings and give a fixed point result‎, ‎which is a proper‎ ‎generalization of some multivalued fixed point theorems including Nadler's‎.

متن کامل

Generalized multivalued $F$-weak contractions on complete metric spaces

In this paper,  we introduce the notion of  generalized multivalued  $F$- weak contraction and we prove some fixed point theorems related to introduced  contraction for multivalued mapping in complete metric spaces.  Our results extend and improve the results announced by many others with less hypothesis. Also, we give some illustrative examples.

متن کامل

On the topological equivalence of some generalized metric spaces

‎The aim of this paper is to establish the equivalence between the concepts‎ ‎of an $S$-metric space and a cone $S$-metric space using some topological‎ ‎approaches‎. ‎We introduce a new notion of a $TVS$-cone $S$-metric space using‎ ‎some facts about topological vector spaces‎. ‎We see that the known results on‎ ‎cone $S$-metric spaces (or $N$-cone metric spaces) can be directly obtained‎ from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fixed Point Theory and Applications

سال: 2022

ISSN: ['1661-7746', '1661-7738']

DOI: https://doi.org/10.1007/s11784-022-01015-x